序
本文主要研究一下storm trident spout的_maxTransactionActive
MasterBatchCoordinator
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/MasterBatchCoordinator.java
TreeMap_activeTx = new TreeMap (); public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) { _throttler = new WindowedTimeThrottler((Number)conf.get(Config.TOPOLOGY_TRIDENT_BATCH_EMIT_INTERVAL_MILLIS), 1); for(String spoutId: _managedSpoutIds) { _states.add(TransactionalState.newCoordinatorState(conf, spoutId)); } _currTransaction = getStoredCurrTransaction(); _collector = collector; Number active = (Number) conf.get(Config.TOPOLOGY_MAX_SPOUT_PENDING); if(active==null) { _maxTransactionActive = 1; } else { _maxTransactionActive = active.intValue(); } _attemptIds = getStoredCurrAttempts(_currTransaction, _maxTransactionActive); for(int i=0; i<_spouts.size(); i++) { String txId = _managedSpoutIds.get(i); _coordinators.add(_spouts.get(i).getCoordinator(txId, conf, context)); } LOG.debug("Opened {}", this); } public void nextTuple() { sync(); } private void sync() { // note that sometimes the tuples active may be less than max_spout_pending, e.g. // max_spout_pending = 3 // tx 1, 2, 3 active, tx 2 is acked. there won't be a commit for tx 2 (because tx 1 isn't committed yet), // and there won't be a batch for tx 4 because there's max_spout_pending tx active TransactionStatus maybeCommit = _activeTx.get(_currTransaction); if(maybeCommit!=null && maybeCommit.status == AttemptStatus.PROCESSED) { maybeCommit.status = AttemptStatus.COMMITTING; _collector.emit(COMMIT_STREAM_ID, new Values(maybeCommit.attempt), maybeCommit.attempt); LOG.debug("Emitted on [stream = {}], [tx_status = {}], [{}]", COMMIT_STREAM_ID, maybeCommit, this); } if(_active) { if(_activeTx.size() < _maxTransactionActive) { Long curr = _currTransaction; for(int i=0; i<_maxTransactionActive; i++) { if(!_activeTx.containsKey(curr) && isReady(curr)) { // by using a monotonically increasing attempt id, downstream tasks // can be memory efficient by clearing out state for old attempts // as soon as they see a higher attempt id for a transaction Integer attemptId = _attemptIds.get(curr); if(attemptId==null) { attemptId = 0; } else { attemptId++; } _attemptIds.put(curr, attemptId); for(TransactionalState state: _states) { state.setData(CURRENT_ATTEMPTS, _attemptIds); } TransactionAttempt attempt = new TransactionAttempt(curr, attemptId); final TransactionStatus newTransactionStatus = new TransactionStatus(attempt); _activeTx.put(curr, newTransactionStatus); _collector.emit(BATCH_STREAM_ID, new Values(attempt), attempt); LOG.debug("Emitted on [stream = {}], [tx_attempt = {}], [tx_status = {}], [{}]", BATCH_STREAM_ID, attempt, newTransactionStatus, this); _throttler.markEvent(); } curr = nextTransactionId(curr); } } } } private static class TransactionStatus { TransactionAttempt attempt; AttemptStatus status; public TransactionStatus(TransactionAttempt attempt) { this.attempt = attempt; this.status = AttemptStatus.PROCESSING; } @Override public String toString() { return attempt.toString() + " <" + status.toString() + ">"; } } private static enum AttemptStatus { PROCESSING, PROCESSED, COMMITTING }复制代码
- MasterBatchCoordinator在open方法对_maxTransactionActive进行设置,从Config.TOPOLOGY_MAX_SPOUT_PENDING(
topology.max.spout.pending
),配置文件默认为null,这里在该值为null时设置_maxTransactionActive为1 - nextTuple这里对同时处理的batches的数量进行了控制,只有_activeTx中的batches处理成功或失败之后才能继续下一个batch
- _activeTx是一个treeMap,它以transactionId为key,value是TransactionStatus,它里头包含了TransactionAttempt及AttemptStatus;AttemptStatus有三种状态,分别是PROCESSING、PROCESSED、COMMITTING
TridentSpoutCoordinator
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/TridentSpoutCoordinator.java
RotatingTransactionalState _state; public void prepare(Map conf, TopologyContext context) { _coord = _spout.getCoordinator(_id, conf, context); _underlyingState = TransactionalState.newCoordinatorState(conf, _id); _state = new RotatingTransactionalState(_underlyingState, META_DIR); } public void execute(Tuple tuple, BasicOutputCollector collector) { TransactionAttempt attempt = (TransactionAttempt) tuple.getValue(0); if(tuple.getSourceStreamId().equals(MasterBatchCoordinator.SUCCESS_STREAM_ID)) { _state.cleanupBefore(attempt.getTransactionId()); _coord.success(attempt.getTransactionId()); } else { long txid = attempt.getTransactionId(); Object prevMeta = _state.getPreviousState(txid); Object meta = _coord.initializeTransaction(txid, prevMeta, _state.getState(txid)); _state.overrideState(txid, meta); collector.emit(MasterBatchCoordinator.BATCH_STREAM_ID, new Values(attempt, meta)); } }复制代码
- TridentSpoutCoordinator的execute方法按txid来存取meta,之后往TridentBoltExecutor发射Values(attempt, meta)
TridentBoltExecutor
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/TridentBoltExecutor.java
RotatingMap
- TridentBoltExecutor使用RotatingMap(
_batches
)来存放batch的信息,key为txid,而valute为TrackedBatch - 在调用_bolt.execute(, tuple)方法时,传递了BatchInfo,它里头的state值为_bolt.initBatchState(batchGroup, id),通过_bolt的initBatchState得来的,这是在第一次_batches里头没有该txid信息的时候,第一次创建的时候调用
- 这里的checkFinish也是根据batch对应的TrackedBatch信息来进行判断的;finishBatch的时候会调用_bolt.finishBatch(),传递batchInfo过去;failBatch也是对batch对应的TrackedBatch进行操作
BatchInfo
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/BatchInfo.java
public class BatchInfo { public IBatchID batchId; public Object state; public String batchGroup; public BatchInfo(String batchGroup, IBatchID batchId, Object state) { this.batchGroup = batchGroup; this.batchId = batchId; this.state = state; }}复制代码
- BatchInfo里头包含了batchId,state以及batchGroup信息
TridentSpoutExecutor
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/TridentSpoutExecutor.java
public Object initBatchState(String batchGroup, Object batchId) { return null; } public void execute(BatchInfo info, Tuple input) { // there won't be a BatchInfo for the success stream TransactionAttempt attempt = (TransactionAttempt) input.getValue(0); if(input.getSourceStreamId().equals(MasterBatchCoordinator.COMMIT_STREAM_ID)) { if(attempt.equals(_activeBatches.get(attempt.getTransactionId()))) { ((ICommitterTridentSpout.Emitter) _emitter).commit(attempt); _activeBatches.remove(attempt.getTransactionId()); } else { throw new FailedException("Received commit for different transaction attempt"); } } else if(input.getSourceStreamId().equals(MasterBatchCoordinator.SUCCESS_STREAM_ID)) { // valid to delete before what's been committed since // those batches will never be accessed again _activeBatches.headMap(attempt.getTransactionId()).clear(); _emitter.success(attempt); } else { _collector.setBatch(info.batchId); _emitter.emitBatch(attempt, input.getValue(1), _collector); _activeBatches.put(attempt.getTransactionId(), attempt); } } public void finishBatch(BatchInfo batchInfo) { }复制代码
- TridentSpoutExecutor的execute方法,也是根据txid来区分各自batch的信息
SubtopologyBolt
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/planner/SubtopologyBolt.java
public Object initBatchState(String batchGroup, Object batchId) { ProcessorContext ret = new ProcessorContext(batchId, new Object[_nodes.size()]); for(TridentProcessor p: _myTopologicallyOrdered.get(batchGroup)) { p.startBatch(ret); } return ret; } public void execute(BatchInfo batchInfo, Tuple tuple) { String sourceStream = tuple.getSourceStreamId(); InitialReceiver ir = _roots.get(sourceStream); if(ir==null) { throw new RuntimeException("Received unexpected tuple " + tuple.toString()); } ir.receive((ProcessorContext) batchInfo.state, tuple); } public void finishBatch(BatchInfo batchInfo) { for(TridentProcessor p: _myTopologicallyOrdered.get(batchInfo.batchGroup)) { p.finishBatch((ProcessorContext) batchInfo.state); } } protected static class InitialReceiver { List_receivers = new ArrayList<>(); RootFactory _factory; ProjectionFactory _project; String _stream; public InitialReceiver(String stream, Fields allFields) { // TODO: don't want to project for non-batch bolts...??? // how to distinguish "batch" streams from non-batch streams? _stream = stream; _factory = new RootFactory(allFields); List projected = new ArrayList<>(allFields.toList()); projected.remove(0); _project = new ProjectionFactory(_factory, new Fields(projected)); } public void receive(ProcessorContext context, Tuple tuple) { TridentTuple t = _project.create(_factory.create(tuple)); for(TridentProcessor r: _receivers) { r.execute(context, _stream, t); } } public void addReceiver(TridentProcessor p) { _receivers.add(p); } public Factory getOutputFactory() { return _project; } }复制代码
- SubtopologyBolt在initBatchState的时候,创建ProcessorContext的也是带有batchId的标识,这样子不同的batch并行的话,它们的ProcessorContext也是区分开来的
- execute方法使用的是各自batch的ProcessorContext(
batchInfo.state
),调用TridentProcessor的execute方法,使用的是各自batch的ProcessorContext - finishBatch方法也一样,将(ProcessorContext) batchInfo.state传递给TridentProcessor.finishBatch
AggregateProcessor
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/planner/processor/AggregateProcessor.java
public void startBatch(ProcessorContext processorContext) { _collector.setContext(processorContext); processorContext.state[_context.getStateIndex()] = _agg.init(processorContext.batchId, _collector); } public void execute(ProcessorContext processorContext, String streamId, TridentTuple tuple) { _collector.setContext(processorContext); _agg.aggregate(processorContext.state[_context.getStateIndex()], _projection.create(tuple), _collector); } public void finishBatch(ProcessorContext processorContext) { _collector.setContext(processorContext); _agg.complete(processorContext.state[_context.getStateIndex()], _collector); }复制代码
- AggregateProcessor的startBatch、execute、finishBatch方法都使用了ProcessorContext的state,而该ProcessorContext从SubtopologyBolt传递过来的就是区分batch的
EachProcessor
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/planner/processor/EachProcessor.java
public void prepare(Map conf, TopologyContext context, TridentContext tridentContext) { Listparents = tridentContext.getParentTupleFactories(); if(parents.size()!=1) { throw new RuntimeException("Each operation can only have one parent"); } _context = tridentContext; _collector = new AppendCollector(tridentContext); _projection = new ProjectionFactory(parents.get(0), _inputFields); _function.prepare(conf, new TridentOperationContext(context, _projection)); } public void execute(ProcessorContext processorContext, String streamId, TridentTuple tuple) { _collector.setContext(processorContext, tuple); _function.execute(_projection.create(tuple), _collector); } public void startBatch(ProcessorContext processorContext) { } public void finishBatch(ProcessorContext processorContext) { }复制代码
- EachProcessor则是将ProcessorContext设置到_collector,然后调用_function.execute的时候,将_collector传递过去;这里的_collector为AppendCollector
AppendCollector
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/planner/processor/AppendCollector.java
public class AppendCollector implements TridentCollector { OperationOutputFactory _factory; TridentContext _triContext; TridentTuple tuple; ProcessorContext context; public AppendCollector(TridentContext context) { _triContext = context; _factory = new OperationOutputFactory(context.getParentTupleFactories().get(0), context.getSelfOutputFields()); } public void setContext(ProcessorContext pc, TridentTuple t) { this.context = pc; this.tuple = t; } @Override public void emit(List
- 当_function.execute使用AppendCollector进行emit的时候,AppendCollector会将这些tuple交给TupleReceiver去处理,而传递过去的context为EachProcessor设置的ProcessorContext,即每个batch自己的ProcessorContext;TupleReceiver的execute方法可能对ProcessorContext进行存取,这个也是batch维度的,比如AggregateProcessor将聚合结果存放到自己batch的processorContext.state中
小结
- storm的trident使用[id,count]数据来告诉下游的TridentBoltExecutor来结束一个batch;而TridentBoltExecutor在接收[id,count]数据的时候,会先判断tracked.reportedTasks是否等于cond.expectedTaskReports(
这个在上游的TridentBoltExecutor的parallelism大于1的时候用来聚合这些task的数据
),相等之后再判断tracked.receivedTuples是否等于tracked.expectedTupleCount,相等才能进行finishBatch - storm的trident spout的_maxTransactionActive参数根据Config.TOPOLOGY_MAX_SPOUT_PENDING(
topology.max.spout.pending
)进行设置,配置文件默认为null,在该值为null时_maxTransactionActive为1 - MasterBatchCoordinator对同时处理的batches的数量进行了控制,只有_activeTx中的batches处理成功或失败之后才能继续下一个batch;而当并行有多个_activeTx的时候,下游的TridentBoltExecutor也能够区分batch来进行处理,不会造成混乱;比如SubtopologyBolt在initBatchState的时候,创建ProcessorContext的也是带有batchId的标识,这样子不同的batch并行的话,它们的ProcessorContext也是区分开来的;SubtopologyBolt里头调用的TridentProcessor有的会使用ProcessorContext来存储结果,比如AggregateProcessor将聚合结果存放到自己batch的processorContext.state中